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1 Motivation and background

1.1 Why should I care about making small circuits?

Qubits don’t last forever - in fact, for the most part they don’t stick around for very long at all.
Qubit decoherence makes it highly desirable to come up with quantum circuits that are very time
efficient. In response to this problem, classes of quantum circuits called small depth, or bounded
depth circuits, have emerged over the last 15 or so years. Based loosely on their classical counter-
parts, these circuits achieve small depth by taking advantage of the high degree of parallelization
offered by the addition of a quantum fanout gate, and of ancilla qubits - in a sense, they trade
circuit depth for circuit breadth. Bounded depth circuits can replace their ‘normal’ counterparts
in many interesting, and also commonly encountered situations, leading to circuits that can both
scale and perform better.

These notes will give a brief summary of classical and quantum complexity classes for bounded
depth circuits, as well as show some significant results which distinguish the two. We will go
through a number of examples of how circuits can be parallelized to reduce their depth; the
quantum fanout gate will be a major component of these. In particular, we will work through a
key proof of a containment result that led to the conclusion that bounded depth quantum circuits
are significantly more powerful than their classical counterparts. Finally, we will review some
other interesting results and open problems.

1.2 Parallelization of circuits

A quantum circuit can be envisioned as the product of unitaries L1, . . . , Ld called ‘layers’, as shown
in Figure 1. The depth of a circuit is the number of layers, d.

Figure 1: A circuit U of depth d can be represented as U = L1L2 · · ·Ld where all the Li are tensor
products of unitaries acting on one or more qubits simultaneously. We note that the order of the
Li is reversed for circuits and unitaries, since unitaries are applied from right to left, while circuits
work from left to right.

1



There are two notions of parallelization which can be taken advantage of in quantum circuits
[1]. The first is simple: gates acting on different qubits can be applied in parallel. Consider the
example circuit in Figure 2. The depth of the circuit looks significantly higher when the gates are
applied one at a time, but when we parallelize this, we can see that the depth is halved.

Figure 2: The first type of parallelization: gates applied to different qubits can be applied at the
same time. Here we see that a circuit having apparent depth 6 can be condensed into depth 3.

The second type of parallelization is that commuting gates acting on the same qubit can be
applied in parallel. We show an example of this in Figure 3. We will focus primarily on this
nontrivial type of parallelization, because it is a special tool indispensable for making small depth
circuits. We’ll return to Figure 3 in Section 4.2.3.

Figure 3: Commuting gates (here it’s the same gate) can be applied simultaneously to the same
qubit. First, the gate M is diagonalized as M = TDT †. T † is applied to the target qubit (recall that
circuits perform the layers in reverse), which is then fanned out (entangled) to multiple ancilla
qubits. The diagonal gate is applied simultaneously to each ancilla, then everything is unentangled
and T is applied again. Image from [4].
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2 Fanout, parity and modulo gates

Before we dive in to the complexity theory, let us define a few important gates.
The most basic of the Boolean gates are AND, OR and NOT. Their truth tables are shown

below:

AND OR NOT
Input 1 Input 2 Output

0 0 0
0 1 0
1 0 0
1 1 1

Input 1 Input 2 Output
0 0 0
0 1 1
1 0 1
1 1 0

Input Output
0 1
1 0

A classical fanout gate takes one input bit, and ‘fans’ out as many copies of it as desired. It can
be imagined physically as soldering additional wires to the input in order to ‘split’ it. A classical
parity gate, on the other hand, is like a fan-in gate. It takes an arbitrary number of bits as input,
and computes their parity, i.e. the sum of the input bits modulo 2. Both gates are displayed
graphically in Figure 4.

Figure 4: Circuit diagrams for classical fanout (left) and parity (right).

We also define the classical Modq gate, where

Modq(b1, . . . , bn) =

{
0 if b1 + . . .+ bn ≡ 0 mod q

1 otherwise.
(1)

Notice that the parity gate is just a Mod2 gate.

The standard gates we’ll consider for quantum circuits are the Hadamard, CNOT, and Toffoli:

H =
1√
2

(
1 1
1 −1

)
, CNOT =

( 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
, TOF =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

 . (2)

The Toffoli here is pictured for three qubits - it flips the target qubit only if the first two qubits
are both in state |1〉. We’ll also consider an unbounded Toffoli gate, which for n input qubits flips
a target qubit only if all n inputs are in state |1〉.

Quantum fanout and parity are defined somewhat differently than in the classical sense. Con-
sider some n qubit state |x1, . . . , xn〉 where xi ∈ {0, 1}. Mathematically, let us define fanout F2
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and parity MOD2 as having the action

F2|x1, . . . , xn, b〉 = |x1 ⊕ b, . . . , xn ⊕ b, b〉, (3)

MOD2|x1, . . . , xn, b〉 = |x1, . . . , xn, b⊕ (x1 ⊕ · · · ⊕ xn)〉. (4)

Quantum fanout and parity are shown graphically in Figure 5.

Figure 5: Circuit diagrams for quantum fanout (left), and parity (right). Note that the quantum
fanout gate is commonly drawn ‘upside-down’ when compared to its definition, with the control bit
shown here as the first qubit rather than the last.

In addition, we define the MODq gate, the quantum analog of the classical Modq, which has
the action

MODq|x1, . . . , xn, b〉 = |x1, . . . , xn, b⊕Modq(x1, . . . , xn)〉. (5)

There is an important thing to note here. Quantum fanout means something subtly different
than classical fanout. In classical fanout, we are making arbitrarily many copies of the state simply
by attaching additional wires. This clearly cannot be the case in the quantum version, due to the
no-cloning theorem. The quantum fanout is a means of copying a qubits state to various ancilla
by entangling it with them, using a cascade of simultaneous CNOTs with the ‘copied’ qubit as
control. This copying, however, is of the classical bit values rather than the ‘true’ quantum state.

3 Complexity theory

3.1 Circuit complexity classes

When we speak of small depth circuits, we mean a depth polylogarithmic, or even constant, in
the number of input qubits. There are a handful of important complexity classes to which we will
frequently refer. We begin with a summary of the classical classes [4]:

Definition (NC): The class NCi is the set of Boolean circuits with n inputs consisting of
NOT, and bounded (i.e. two input) fan-in AND and OR, which can be executed in depth
polylogarithmic in the input size, O(logi n). NC = ∪iNCi.

Definition (AC): The class ACi is similar to NCi, except that fan-in AND and OR are
allowed to be unbounded, meaning they can have more than two input bits. AC = ∪iACi.

Definition (ACC): The class ACCi[q] is the same as ACi but with the addition of un-
bounded Modq gates. ACCi = ∪qACCi[q], and ACC = ∪iACCi.
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The first quantum class, QNC, was defined in 1998 by Moore and Nilsson [2]. QAC and
QACC were defined initially in 1999 by Moore [3], and were elaborated on in a 2001 paper [4]
where they proved some of the important containment results which we will be summarizing here.
The classes are defined as follows [2, 3, 4]:

Definition (QNC): Let Fn be a family of operators on n qubits. Fn is in QNCi if it can
be written as a product of O(logi n) operators, with a number of ancilla polynomial in n.
QNC = ∪iQNCi.

Definition (QAC): A family of operators Fn is in QACi if it can be written as a product
of O(logi n) gates and number of ancilla polynomial in n, where the circuit layers consist of
tensor products of a finite set of single qubit gates, (unbounded) Toffoli gates, or controlled-not
layers. QAC = ∪iQACi.

Definition (QACC): The class QACCi[q] is the same as QACi but with the addition of
MODq gates. QACCi = ∪qQACCi[q], and QACC = ∪iQACCi.

Please see Appendix A for an alternate definition of QNC and a brief discussion.
The classes are shown side by side with their classical counterparts in Table 1. We can also

define variants of the classes including quantum fanout gate - these are denoted by subscript ‘wf’.

Classical Quantum

NCi QNCi, QNCi
wf

ACi QACi, QACi
wf

ACCi QACCi, QACCi
wf

Table 1: Quantum analogs of classical complexity classes. The subscripted ‘wf’ denotes the class
with the addition of quantum fanout.

In what follows, we will work for the most part with i = 0, meaning constant depth circuits.

3.2 Containment results

There are a number of interesting results for quantum classes, however we will concern ourselves
with the following two, due to their stark contrast with the classical case:

1. QACC0[q] = QACC0[p] for all q and p not equal to 1 [3], as opposed to ACC0[q] 6=
ACC0[p] for any relatively prime q, p [5].

2. QAC0
wf = QACC0[2] = QACC0 [4], whereas AC0 ⊂ ACC0[2] ⊂ ACC0 [5, 6].

4 Parallelization of quantum circuits

4.1 Equivalence of fanout and parity

There is a very close, and useful relationship between quantum fanout and parity (MOD2). Specif-
ically, they are related by conjugation of each qubit with a Hadamard gate [3, 4], as is presented
in Figure 6.
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Figure 6: A parity gate is just a fanout gate conjugated by Hadamards. This is useful because if
we have a means of implementing one of these gates in constant depth, we immediately have a
means of implementing the other. Image from [4].

Showing this to be true has been relegated to Appendix B for the perusal of the mathematically
inclined. Alternatively, consider it an exercise (it’s not that bad). For now, let us carry on with
the knowledge that this equivalence holds true.

4.2 Quantum fanout is powerful!

Having a fanout gate immediately leads to the ability to parallelize quantum circuits with specific,
but frequently encountered traits. The basic premise of parallelization of circuits to small depth
is as follows: fanout, compute, fanout. If we are able to parallelize a sequence of gates, first we
fanout the inputs to entangle them with ancillae. Next, we apply the gates simultaneously to each
ancilla copy. Then, we fanout again to unentangle and return the ancillae to their original states.

We will not prove any of the following propositions rigourously, but instead provide a circuit for
each to see them in action. One thing to note is that the original versions of these propositions in
[2] assume that fanout can be done in depth O(log n) using layers of CNOTs, whereas we will show
in Section 4.3 that they can in fact be performed in constant depth. Furthermore, these diagrams
are all shown for small numbers of qubits - the true advantage of these types of parallelizations is
seen with increasing number of qubits.

4.2.1 Same control qubit, multiple target qubits

Proposition A series of n controlled gates coupling the same input to n target qubits can be
parallelized to O(log n) depth with O(n) ancillae [2].

Figure 7: Multiple gates with the same control bit can be applied simultaneously to multiple target
qubits by copying the control bit down to ancillae using a fanout gate (shown here as a layer of
CNOTs). Gates are applied, and we fanout again to unentangle the ancillae and return them to
their original state. Image from [2].
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4.2.2 Diagonal gates on the same qubit

Proposition A series of n diagonal gates on the same qubits can be parallelized to O(log n)
depth with O(n) ancillae [2].

Figure 8: A sequence of diagonal gates acting on the same qubits can be parallelized by fanning out
to ancillae, applying the gates simultaneously, and fanning out again to unentangle the ancillae.
Image from [2].

4.2.3 Commuting gates with multiple control qubits, same target qubit

Proposition A series of n controlled-U gates acting on the same target qubit(s) where the
U’s mutually commute can be parallelized to O(log n) depth with O(n) ancillae [2].

Figure 9: Gates which commute (or are identical) applied to the same qubit(s) can be parallelized
to O(log n) depth with ancillae by simultaneously diagonalizing them, fanning out, and applying
all the diagonal gates simultaneously before fanning out again. In this case, U = TDT †. Image
modified from [2].

4.3 Fanout and parity in constant depth

As previously mentioned, circuits in Section 4.2 show the implementation of a fanout gate on
n qubits as taking O(log n) steps, using a ‘divide and conquer’-style layer of CNOTs. However,
there is a very nice proposition from [3, 4] that intertwines quantum fanout, parity, and cat states,
allowing us to implement each of these in constant depth:
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Proposition In any class of quantum circuits that includes Hadamard and controlled-not
gates, the following are equivalent:

1. It is possible to map α|0〉 + β|1〉 and n− 1 ancillae in the state |0〉 onto an n-qubit cat
state α|0 · · · 0〉+ β|1 · · · 1〉 in constant depth.

2. The n-ary fanout gate can be implemented in constant depth with at most n−1 additional
ancillae.

3. An n-ary parity or MOD2 gate can be implemented in constant depth with at most n−1
additional ancillae.

In other words, if we can make a cat state in constant depth, we can do fanout and parity in
constant depth.

We can immediately see that 2 and 3 are equivalent, since fanout and parity are related by a
conjugation of Hadamards as we showed in Section 4.1. If we find a constant depth implementation
for one of these, we can clearly do the other in that same depth with the addition of just two
layers of Hadamards.

We can reason 1 ⇒ 3 using the circuit below in Figure 10. Gates denoted by π are the
controlled phase gate with a phase of π,

CZ =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , (6)

which is often denoted simply as a controlled-Z gate.

Figure 10: If we have a means of producing a cat state in constant depth, such as a fanout gate
in this case, we can produce a parity gate in constant depth by noticing that the parity gate is a
series of controlled-Z gates (denoted by the π) with the target conjugated by Hadamards. Image
from [4].

In the 3rd panel of Figure 10, we can see that the parallelization style of Section 4.2.3 was
used, which is what allows for parity to be implemented in constant depth. We can also see that
fanout is used here as a means of producing a cat state in constant depth. This leads to somewhat
circular reasoning, but also shows how 2 ⇒ 1 is somewhat obvious: since the result of a fanout
gate is simply a cat state provided we start with the state |+〉 and all ancillae are in |0〉, if we can
do fanout in constant depth this is equivalent to making a cat state in constant depth. Further-
more, if we didn’t use a fanout as a means of making the cat state, we could simply conjugate this
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entire circuit by H gates to produce fanout from parity, and the depth would remain constant,
completing the proof.

With the ability to do fanout and parity in constant depth, we can finally prove some excep-
tional results for small quantum circuit classes.

5 QAC0
wf = QACC0[2] = QACC0

The equivalence
QAC0

wf = QACC0[2] = QACC0 (7)

is the main point we will prove through this lecture. This is an important result, and one of the
first of the area. It is in great contrast to the classical case:

AC0 ⊂ ACC0[2] ⊂ ACC0. (8)

It has been proved classically that the parity gate, which is in ACC0[2], cannot be simulated
in AC0, leading to the first inclusion [6]. The second comes from the fact that for two integers p
and q which are relatively prime,

ACC0[p] 6= ACC0[q], (9)

which essentially means you cannot simulate Modp gates using Modq gates in constant depth (in
fact, the depth required would be exponential [5]). However, as we will soon see, this is indeed
possible for MODq gates in quantum circuits, and we can even use any MODq gate to simulate
another in constant depth. Since parity is a MOD2 gate, as long as we have parity we can simulate
the rest of QACC0, making this quantum analog of ACC0 significantly more powerful.

First, we will see how QAC0
wf = QACC[2]. Then, we will see a complete proof of how

QACC[q] ⊆ QACC[2], meaning that using parity gates, we can simulate any MODq gate. Show-
ing the converse, that any MODq gate can simulate a parity gate, QACC0[2] ⊆ QACC0[q], is
slightly more cumbersome, so a general sketch will be presented, with the details left to [4].

5.1 QAC0
wf = QACC0[2]

This equality can be reasoned fairly simply. If we add the quantum fanout gate to QAC0, this is
equivalent to adding the parity gate as well since we can just conjugate the fanout with Hadamards.
Similarly, QACC0[2] contains the parity gate and is defined as being identical to QAC0 with only
the addition of the parity gate; this means it also contains the fanout gate. Thus, it should be
clear that QAC0

wf = QACC0[2].

5.2 QACC0[q] ⊆ QACC0[2]

Formally, we would like to prove the following proposition from [4]:

Proposition In any circuit class containing n-ary parity gates and one-qubit gates, we can
construct an n-ary MODq gate, with O(n log q) work bits, in depth depending only on q.
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Less formally, we can use parity to simulate any MODq gate, using some additional work bits, in
depth that depends only on q, and not on the size of the inputs.

The proof is as follows, and is for the most part shown graphically with relevant circuits. Let
k = dlog2 qe. Consider a quantum state |x〉 = |xk−1 · · ·x0〉 on k qubits where x ∈ 0, 1, . . . , k − 1
and the xi ∈ {0, 1} comprise the binary representation of x.

Let M be a Boolean permutation matrix on k qubits with the following action:

M |x〉 =

{
|(x+ 1) mod q〉 if x < q

|x〉 if x ≥ q.
(10)

A matrix of this type means that if we apply M q times, the |0〉 state will end up back at |0〉.
This cyclic nature is essential to showing why the circuit works.

We can simulate any MODq gate with the circuit in Figure 11:

Figure 11: Using only a permutation matrix M , we can simulate a MODq gate with the addition
of dlog2 qe extra ancillae. The suspicious looking gate between conjugation with M is a generalized
Toffoli gate that has had all its inputs conjugated by X. Image from [4].

The Toffoli gate is written with blank circles instead of filled-in circles for its control bits to denote
conjugation by X.

We can do a simple example to show that this circuit works.
Suppose we would like to perform a MOD5 gate. Then we will need k = dlog2 5e = 3 ancillae,

which will start in the state |000〉. Suppose our input state is |0110101〉.
Our matrix M takes the following form, permuting only the first 5 basis states of the 3 qubit

ancilla block (the remaining ones are untouched):

M =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


. (11)

For each bit of the input state, from left to right, we will apply a controlled-M gate to the
ancillae. The state will undergo the following transformation with each input bit:
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Input bit (|0110101〉) Ancillae
- |000〉
0 |000〉
1 |001〉
1 |010〉
0 |010〉
1 |011〉
0 |011〉
1 |100〉

With the resultant state |100〉, we conjugate by X, giving |011〉. Now these 3 qubits become
the input for a Toffoli gate on the output. Since not all the bits are 1, there is no effect on the
target bit. Assuming the target bit started in state |0〉, it subsequently gets flipped by X and
outputs ‘1’, as it should, since the sum of the input bits in 0110101 is 4, which is not 0 mod 5.
After the output is produced, we conjugate the ancillae again by X and apply the inverse of M
in order to unentangle all the ancillae.

From this example we can see why M must have the structure it does - the only way for the
circuit to output 0, meaning the input was 0 mod q, is if the output bit was 1 before the X gate
was applied. This means that all the input ancillae had to have been 1, meaning that they must
have all been 0 before they too had the X gate applied. The only way for all the ancillae to have
been 0 before the Toffoli is if all the n input qubits were in state 0, in which case either no M
gates were ever applied to the ancillae, or a multiple of q M gates were applied (since M is cyclic,
after q applications of M we’ll be back at 0). A number of Ms not a multiple of q would have
shifted the state away from all 0s.

The circuit in Figure 11 works just fine, but by taking advantage of the fact that we are
applying identical controlled gates to the same target qubit, we can parallelize this circuit down
to depth depending only on q by diagonalizing the gate M as TDT †. This is shown in Figure 12.

Figure 12: We can parallelize our circuit for MODq using the proposition in Section 4.2.3, where
we diagonalize M as TDT †. This circuit represents only the first half of Figure 11. The second
half is analogous, but we diagonalize M † instead. Image from [4].

The fanout gate can be performed in constant depth, as per the result of Section 4.3. Fanout
is equivalent to parity, so we can just as well imagine that we are using parity gates here. The
dependence of depth on q arises from the fact that both T and D will have depths dependent on
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k, and thus on q. A gate on k qubits can be performed with O(k34k) two qubit gates without
any ancillae [7], so T and D can be done in depth O(q2 log3 q). The number of ancillae required is
(n−1)k, which does depend on n, however, the depth of the circuit itself clearly no longer depends
on the number of inputs, which leads to the ability to implement MODq circuits in constant depth
using only MOD2.

5.3 QACC0[2] ⊆ QACC0[q]

This containment was conjectured by Moore in the final remarks of [3], but was suspected not to
be true. Two years later in [4], a proof had emerged. We will not cover the complete proof here,
but rather sketch the general process by which it can be achieved.

To prove this direction, we must first define the notion of QAC0 equivalence between two
families of operators.

Definition Let {Fn} and {Gn}, Gn, Fn ∈ U(2n) be families of operators. We say {Fn} is
reducible to {Gn} if there is a family {Rn}, Rn ∈ U(2n+p(n)) of QAC0 operators augmented
with operators from {Gn} such that for all x,y ∈ {0, 1}n, there is a setting of z1, . . . , zp(n) ∈
{0, 1} for which 〈y|Fn|x〉 = 〈y, z|Rn|x, z〉. Operator families are QAC0 equivalent if they are
QAC0 reducible to each other.

In other words, given two families of operators, they are QAC0 equivalent if we can simulate
the action of the first family using only QAC0 operators and those of the second family with some
ancillae, and vice versa.

The authors define the generalized gates

Mq|x1, . . . , xn, b〉 = |x1, . . . , xn, (b+ x1 + . . .+ xn) mod q〉, (12)

Fq|x1, . . . , xn, b〉 = |(x1 + b) mod q, . . . , (xn + b) mod q, b〉, (13)

where the xi are no longer limited to the 0 and 1 of qubits, but instead are qudits. Of course, for
the case where q = 2, F2 is the standard qubit fanout gate as previously defined, and M2 is the
qubit parity gate.

The steps they take are as follows:

1. Show that Fq and Mq are QAC0 equivalent. This is done by showing

Mq = (H⊗(n+1)
q )−1(Fq)(H

⊗(n+1)
q ), (14)

where Hq is the quantum Fourier transform, or the generalized Hadamard gate for qudits.
This fact is analogous to how F2 is equal to parity conjugated by Hadamard gates, and the
math can be done in a similar way as that in Appendix B.

2. Show that MODq and Mq are QAC0 equivalent. This is the cumbersome step, and is done
primarily using a series of circuits.

3. As a result of steps 1 and 2, it follows that Fq and MODq are QAC0 equivalent.
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4. From the proof of the other direction, we know that MODq is QAC0 equivalent to F2 because
we can use F2 conjugated by Hadamards to get MOD2, which we now know can be used to
make any MODq gate.

5. Finally, this means that Fq must be QAC0 equivalent to F2, meaning that we can use QAC0

operations augmented with F2 and some ancillae to obtain Fq, and vice versa. This means
we can make Fq given only some F2, and Mq given only some MOD2, and finally MODq with
only the MOD2 as desired.

It is thus clear how QAC0
wf = QACC0[2] = QACC0. Similarly, we can also see how

QACC0[q] = QACC0[p] - if MODq gates can be used to make parity gates, then we can use
those parity gates to make any MODp gate, so MODq gates effectively simulate any other MODp

gate!

6 Other interesting results and open questions

Many results have emerged from the study of small depth quantum circuits. Here are a few
interesting ones:

• Sorting, arithmetic, phase estimation, and the quantum Fourier transform can all be ap-
proximated in constant depth with polynomially small error [1].

• Stabilizer codes are in QNC1, which means that encoding and decoding using n qubit code
words can be done in depth O(log n) with O(n2) ancillae [2].

• There is another class which we did not mention, QTC0, which is like QAC0 but with the
addition of a threshold gate (i.e. the circuit outputs 1 if the Hamming weight of the input
state is greater than some threshold). Recently, it was proved that QNC0

wf = QAC0
wf =

QTC0
wf [10]. This is a very powerful result! It greatly contrasts the classical case NC0 ⊂

AC0 ⊂ TC0. [8]

There are also a number of open questions in the field, with one in particular remaining elusive:
does QAC0 = QAC0

wf? There is some preliminary evidence to refute this though it has yet to
be deemed conclusive. This evidence hinges on the fact that parity requires a minimum of log n
gates, when not implicitly assumed to be doable in constant depth, leading to the fact that parity
and consequently fanout could not be in QAC0 [9]. As of the writing of [10] in 2012, this problem
and a similar one, asking whether QTC0 = QTC0

wf , have yet to be solved, and no more recent
papers could be found on the topic.

Another very important problem is the number of ancillae required for these circuits. We
mention in the introduction that bounded depth circuits trade depth for breadth by the addition
of polynomially many ancillae - surely, too many ancillae might counteract any benefits we obtain
by shrinking the depth of our circuit. We may reduce the number of errors that occur due to
decoherence, but more ancillae means more gates and thus increases the chance for gate errors
[2]. The tradeoff between depth and the number of ancillae is explored in [9]. More recently, how-
ever, researchers have found different techniques using measurement-based quantum computing
to eliminate the ancillae while attempting to keep the depth low [11].
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Either way, we have seen how small and constant depth circuits can be quite useful. They have
already been shown to be more powerful than their classical counterparts. Also, with or without
ancillae, they will likely be indispensable as quantum computers take shape. Efficiency in time is
key when dealing with systems that decohere so quickly, so the ability to parallelize as much as
possible will be an asset.
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The Complexity Zoo at https://complexityzoo.uwaterloo.ca/Complexity Zoo has
overall been a very useful resource and contains many additional details for both classical
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Circuits” by D. Bera, F. Green and S. Homer (2007) provides a concise summary of the field
and is a good starting point.
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Appendix A: QNC vs. QAC

Recall the definitions of NC and AC.

Definition (NC): The class NCi is the set of Boolean circuits with n inputs consisting of NOT,
and bounded (i.e. two input) fan-in AND and OR, which can be executed in depth polylogarithmic
in the input size, O(logi n). NC = ∪iNCi.

Definition (AC): The class ACi is similar to NCi, except that fan-in AND and OR are allowed
to be unbounded, meaning they can have more than two input bits. AC = ∪iACi.

For these classical classes, it would appear that for a given i, NCi is weaker than ACi due to
the bounds place on its AND and OR gates. It is quite clear that NCi ⊂ ACi.

The quantum classes, on the other hand, at first glance appear to have a very different rela-
tionship.

Definition (QNC): Let Fn be a family of operators on n qubits. Fn is in QNCi if it can be written
as a product of O(logi n) operators, with a number of ancilla polynomial in n. QNC = ∪iQNCi.

Definition (QAC): A family of operators Fn is in QACi if it can be written as a product of
O(logi n) gates and number of ancilla polynomial in n, where the circuit layers consist of tensor
products of a finite set of single qubit gates, (unbounded) Toffoli gates, or controlled-not layers.
QAC = ∪iQACi.

Here, QNC looks like the ‘broader’ class, since there is no immediate stipulation on which
gates may be used - so long as we can implement that circuit in polylogarithmic depth, we can
use whatever (presumably universal) gate set we’d like. QAC appears to be limited in the sense
that we’re restricted to single qubit gates, CNOTs, and Toffolis (which are unbounded, in analogy
with the unbounded AND gates of QAC).

Let us consider instead for QNC a different definition, from [12]:

Definition QNCk is the class of quantum circuit families {Cn}n≥0 for which there exists a
polynomial p such that each Cn contains n input qubits and at most p(n) ancillae. Each Cn

has depth O(logk n) and uses only single-qubit gates and CNOT gates. The single-qubit gates
must be from a fixed finite set.

This alternate definition arose from the need of these additional constraints in [12], namely for
“technical reasons”, however it provides perhaps a more useful working definition than the original
does. It also more closely mirrors the classical case, as QNC now appears to be less powerful
than QAC because it is lacking the unbounded Toffoli gate.
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Appendix B: Mathematical equivalence of fanout and parity

As per Figure 6, we will show that fanout and parity are equivalent by conjugation of Hadamards.
Let us begin with n+ 1 qubits organized into in any n-qubit input state |x〉 = |x1〉|x2〉 · · · |xn〉,

xi ∈ {0, 1}, and some bit b to hold the output:

|φ〉 = |x〉|b〉. (15)

Application of the Hadamard to state |φ〉 produces

(H⊗(n+1))|x〉|0〉 =
1

√
2
n+1

 ∑
y∈{0,1}n

(−1)x·y|y〉

 (|0〉+ |1〉) , (16)

where x · y =
∑n

i=1 xiyi is the dot product modulo 2.
For the next step, it is useful to expand this expression like so:

(H⊗(n+1))|x〉|0〉 =
1

√
2
n+1

 ∑
y∈{0,1}n

(−1)x·y|y〉 · |0〉+
∑

y∈{0,1}n
(−1)x·y|y〉 · |1〉

 . (17)

Now, we must apply a series of CNOT gates (i.e. a fanout, F2) from the output qubit back
to every qubit in the initial state. In the term of Eq. (17) attached to the |0〉 ket, nothing will
happen. In the other term, every |y〉 will have all its bits yi flipped:

(F2)(H
⊗(n+1))|x〉|0〉 =

1
√

2
n+1

 ∑
y∈{0,1}n

(−1)x·y|y〉 · |0〉+
∑

y∈{0,1}n
(−1)x·y|y1 ⊕ 1〉 · · · |yn ⊕ 1〉 · |1〉


=

1
√

2
n+1

 ∑
y∈{0,1}n

(−1)x·y|y〉 · |0〉+
∑

y∈{0,1}n
(−1)

∑n
i=1 xiyi |y1 ⊕ 1〉 · · · |yn ⊕ 1〉 · |1〉

 .

Let us make a change of variables, letting zi = yi ⊕ 1. Then we can write this as

(F2)(H
⊗(n+1))|x〉|0〉 =

1
√

2
n+1

 ∑
y∈{0,1}n

(−1)x·y|y〉 · |0〉+
∑

z∈{0,1}n
(−1)

∑n
i=1 xi(zi⊕1)|z1〉 · · · |zn〉 · |1〉

 .

We can now expand the exponent in the second term, pull part of it out of the sum, and relabel
our variables:

(F2)(H
⊗(n+1))|x〉|0〉 =

1
√

2
n+1

 ∑
y∈{0,1}n

(−1)x·y|y〉 · |0〉+ (−1)
∑n

i=1 xi

∑
z∈{0,1}n

(−1)x·z|z〉 · |1〉


=

1
√

2
n+1

 ∑
y∈{0,1}n

(−1)x·y|y〉 · |0〉+ (−1)
∑n

i=1 xi

∑
y∈{0,1}n

(−1)x·y|y〉 · |1〉


=

1
√

2
n+1

 ∑
y∈{0,1}n

(−1)x·y|y〉

 · (|0〉+ (−1)Mod2(x)|1〉
)

(18)
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where the term
∑n

i=1 xi in the exponent is simply the classical parity of x, Mod2(x).
This product is exactly the result of applying a Hadamard matrix to the state |x〉|Mod2(x)〉.

Since the Hadamard is its own inverse, applying it to the state resulting from Eq. (18) will produce:

(H⊗(n+1))(F2)(H
⊗(n+1))|x〉|0〉 = |x〉|Mod2(x)〉. (19)

= MOD2 (|x〉|0〉) (20)

Therefore, conjugating a fanout gate with Hadamards is exactly the same as a parity gate. A
similar process can be used to show the converse, that conjugating a parity gate with Hadamards
will product a fanout.
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